Replication termination mechanism as revealed by Tus-mediated polar arrest of a sliding helicase.
نویسندگان
چکیده
The replication terminator protein Tus of Escherichia coli promotes polar fork arrest at sequence-specific replication termini (Ter) by antagonizing DNA unwinding by the replicative helicase DnaB. Here, we report that Tus is also a polar antitranslocase. We have used this activity as a tool to uncouple helicase arrest at a Tus-Ter complex from DNA unwinding and have shown that helicase arrest occurred without the generation of a DNA fork or a bubble of unpaired bases at the Tus-Ter complex. A mutant form of Tus, which reduces DnaB-Tus interaction but not the binding affinity of Tus for Ter DNA, was also defective in arresting a sliding DnaB. A model of polar fork arrest that proposes melting of the Tus-Ter complex and flipping of a conserved C residue of Ter at the blocking but not the nonblocking face has been reported. The model suggests that enhanced stability of Tus-Ter interaction caused by DNA melting and capture of a flipped base by Tus generates polarity strictly by enhanced protein-DNA interaction. In contrast, the observations presented here show that polarity of helicase and fork arrest in vitro is generated by a mechanism that not only involves interaction between the terminator protein and the arrested enzyme but also of Tus with Ter DNA, without any melting and base flipping in the termination complex.
منابع مشابه
Replication Termination: Mechanism of Polar Arrest Revealed
The Tus-Ter protein-DNA complex of Escherichia coli blocks progression of DNA replication from only one direction at the replication terminus. As the replication fork helicase unwinds one side of Ter, a conserved cytosine flips out of the duplex and binds to Tus, thereby creating a locked complex that blocks the advancing helicase.
متن کاملReplication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex.
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of ...
متن کاملMechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction.
Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the ...
متن کاملPolar arrest of the simian virus 40 tumor antigen-mediated replication fork movement in vitro by the tus protein-terB complex of Escherichia coli.
The effect of the tus protein-terB sequence complex of Escherichia coli on the movement of the SV40 large tumor antigen (T antigen)-mediated replication fork during SV40 DNA replication in vitro has been examined. In the monopolymerase and dipolymerase systems, the tus protein-terB complex efficiently blocked the replication fork movement in a polar fashion, as observed in prokaryotic replicati...
متن کاملFlanking sequences affect replication arrest at the Escherichia coli terminator TerB in vivo.
We have analyzed the effect of flanking sequences on Tus-induced replication arrest. pBR322 plasmid derivatives which carry the Escherichia coli replication terminator TerB at different locations were used. Efficiency of the replication arrest was estimated from the plasmid copy number and transformation frequency of tus+ cells. We found that flanking sequences do affect replication arrest effi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 35 شماره
صفحات -
تاریخ انتشار 2008